3y^2+6y+2=48

Simple and best practice solution for 3y^2+6y+2=48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+6y+2=48 equation:


Simplifying
3y2 + 6y + 2 = 48

Reorder the terms:
2 + 6y + 3y2 = 48

Solving
2 + 6y + 3y2 = 48

Solving for variable 'y'.

Reorder the terms:
2 + -48 + 6y + 3y2 = 48 + -48

Combine like terms: 2 + -48 = -46
-46 + 6y + 3y2 = 48 + -48

Combine like terms: 48 + -48 = 0
-46 + 6y + 3y2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-15.33333333 + 2y + y2 = 0

Move the constant term to the right:

Add '15.33333333' to each side of the equation.
-15.33333333 + 2y + 15.33333333 + y2 = 0 + 15.33333333

Reorder the terms:
-15.33333333 + 15.33333333 + 2y + y2 = 0 + 15.33333333

Combine like terms: -15.33333333 + 15.33333333 = 0.00000000
0.00000000 + 2y + y2 = 0 + 15.33333333
2y + y2 = 0 + 15.33333333

Combine like terms: 0 + 15.33333333 = 15.33333333
2y + y2 = 15.33333333

The y term is 2y.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2y + 1 + y2 = 15.33333333 + 1

Reorder the terms:
1 + 2y + y2 = 15.33333333 + 1

Combine like terms: 15.33333333 + 1 = 16.33333333
1 + 2y + y2 = 16.33333333

Factor a perfect square on the left side:
(y + 1)(y + 1) = 16.33333333

Calculate the square root of the right side: 4.041451884

Break this problem into two subproblems by setting 
(y + 1) equal to 4.041451884 and -4.041451884.

Subproblem 1

y + 1 = 4.041451884 Simplifying y + 1 = 4.041451884 Reorder the terms: 1 + y = 4.041451884 Solving 1 + y = 4.041451884 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + y = 4.041451884 + -1 Combine like terms: 1 + -1 = 0 0 + y = 4.041451884 + -1 y = 4.041451884 + -1 Combine like terms: 4.041451884 + -1 = 3.041451884 y = 3.041451884 Simplifying y = 3.041451884

Subproblem 2

y + 1 = -4.041451884 Simplifying y + 1 = -4.041451884 Reorder the terms: 1 + y = -4.041451884 Solving 1 + y = -4.041451884 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + y = -4.041451884 + -1 Combine like terms: 1 + -1 = 0 0 + y = -4.041451884 + -1 y = -4.041451884 + -1 Combine like terms: -4.041451884 + -1 = -5.041451884 y = -5.041451884 Simplifying y = -5.041451884

Solution

The solution to the problem is based on the solutions from the subproblems. y = {3.041451884, -5.041451884}

See similar equations:

| 20-18x=20-16x | | x/738-164=82 | | 27-18c=20-16x | | 3(x-102)=600 | | -6x+1=-3x+10 | | 12-Y/40=y/10 | | 10-5/12 | | -30=-4b-6b | | y=1.4935ln(8.06)+0.347 | | -9x+8x=30 | | t=bn-7 | | 3(x+102)=600 | | 2(5x-10)+6=26 | | -5(1-8c)=28 | | =1.4935ln(8.06)+0.347 | | 0=2x^2-23x+30 | | 12e^2x-2=25 | | t^3+9t^2+27t+27=0 | | 6x2/9 | | 3x^4/-3x^4= | | 6(w+3)-(w-7)=2(w-1) | | 18/3=6 | | 2(9n-7)=33 | | y=-4x+.75 | | (3x^2-14x+15)=0 | | 4x+20=3x+42 | | 4x+(x+5)=180 | | -87-43=75 | | -30r=240 | | (1/3)(3.14)(2)7 | | 3x^2+23x+30=x^2 | | x-.6=8.33 |

Equations solver categories